Questions fréquentes expert MLOps avancé
Quelle différence entre MLOps et DevOps classique ?
MLOps ajoute complexité ML : model drift, data dependencies, experiment tracking, A/B testing. Requires ML knowledge + infrastructure expertise. Higher salaries, specialized skills.
Faut-il connaître le machine learning pour faire du MLOps ?
Essentiel niveau avancé. Comprendre training, evaluation, deployment patterns. Collaboration data scientists. Technical depth + ML understanding = premium salaries.
Kubernetes est-il obligatoire pour MLOps ?
Quasi-indispensable niveau expert. Orchestration, scaling, resource management. CKA/CKAD certifications valorisées. Alternative : managed services mais moins flexible.
BigTech vs startups IA, que choisir ?
BigTech : salaires +50-80%, scale, resources, stability. Startups : equity upside, impact, innovation, responsibility. Risk/reward profile différent.
Comment évoluer vers Principal/Staff level ?
Technical leadership, architecture decisions, cross-team impact. 5-8 ans experience minimum. Open source contributions, conference speaking, mentoring valorisés.
LLMOps est-il l'avenir du MLOps ?
Spécialisation très demandée. Complexité inference, fine-tuning, safety. Salaires premium +30-50%. Mais MLOps traditionnel reste important.
Le remote work est-il possible ?
Très répandu, especially post-COVID. Global talent pool. Async collaboration tools. Some on-call requirements. Timezone coordination challenges.
Quelles certifications privilégier ?
AWS/GCP ML certifications. Kubernetes CKA/CKAD. Terraform Associate. Vendor-specific selon stack. Hands-on experience > certifications.
Comment gérer le stress et la complexité ?
Systems thinking, monitoring, automation. Team collaboration, knowledge sharing. Continuous learning mindset. Work-life balance important.
Perspectives à 5-10 ans ?
Automation croissante mais expertise humaine cruciale. Evolution vers platform engineering, AI safety. Management opportunities. Consulting lucratif.